Desigualdades e Inecuaciones
Desigualdades:
Los enunciados a > b y a < b, junto con las expresiones a £ b (a < b o a = b) y a ³ b (a > b o a = b) se conocen como desigualdades. Las primeras se llaman desigualdades estrictas y las segundas, desigualdades no estrictas o amplias.
En numerosas oportunidades y situaciones cotidianas surge la necesidad de comparar dos cantidades y establecer una relación entre ellas. Las desigualdades se comportan muy bien con respecto a la suma pero se debe tener cuidado en el caso de la división y la multiplicación.
Ejemplos.
· Como 2 < 5 entonces 2 + 4 < 5 + 4, es decir, 6 < 9.
· Como 8 > 3 entonces 8 - 4 > 3 - 4, esto es, 4 > - 1
· Como 7 < 10 entonces 7.3 < 10.3, es decir, 21 < 30
· Como 7 < 10 entonces 7. (- 3) > 10.(- 3), esto es - 21 > - 30
En los diferentes ejemplos se observa que:
· al sumar un mismo número a ambos miembros de una desigualdad, el sentido de la misma se mantiene
· al restar un mismo número a ambos miembros de una desigualdad, el sentido de la misma se mantiene
· la multiplicación por un número positivo mantiene el sentido de la desigualdad,
· la multiplicación por un número negativo invierte el sentido de la desigualdad.
Se pueden enunciar algunas propiedades relacionadas con las desigualdades. Sean a, b y c números reales cualesquiera:
· Si a < b entonces a + c < b + c
· Si a < b y c > 0 entonces a.c < b.c
· Si a < b y c < 0 entonces a.c > b.c
Cuando se verifica que a < b y b < c, decimos que b está comprendido entre a y c. En símbolos a < b < c.
Todas las definiciones y propiedades son también válidas para las desigualdades >, £ y ³ .